
Cloud-based e-Infrastructure for Scheduling
Astronomical Observations

James Wetter∗, Özgür Akgun∗, Adam Barker∗, Martin Dominik†, Ian Miguel∗, Blesson Varghese∗

∗School of Computer Science

University of St Andrews

Email: {jpw3, ozgur.akgun, adam.barker, ijm, varghese}@st-andrews.ac.uk

†School of Physics & Astronomy

University of St Andrews

Email: md35@st-andrews.ac.uk

Abstract—Gravitational microlensing exploits a transient phe-
nomenon where an observed star is brightened due to deflection
of its light by the gravity of an intervening foreground star.
It is conjectured that this technique can be used to measure
the abundance of planets throughout the Milky Way. In order
to undertake efficient gravitational microlensing an observation
schedule must be constructed such that various targets are
observed while undergoing a microlensing event. In this paper, we
propose a cloud-based e-Infrastructure that currently supports
four methods to compute candidate schedules via the application
of local search and probabilistic meta-heuristics. We then validate
the feasibility of the e-Infrastructure by evaluating the methods
on historic data. The experiments demonstrate that the use of
on-demand cloud resources for the e-Infrastructure can allow
better schedules to be found more rapidly.

I. INTRODUCTION

Gravitational microlensing is a transient phenomenon where

the light received from an observed star is bent by the gravita-

tion of an intervening foreground star leading to an observable

characteristic brightening, lasting about a month [1], [2]. A

planet orbiting the foreground star can reveal its presence by

creating a further small dip or blip on the otherwise symmetric

light curve [3], [4].

Given that the probability for a given star to be significantly

brightened at any given time is quite small (about one in a

million) [5], a three-step strategy of survey, regular follow-

up, and anomaly monitoring arose [6], [7], [8]. In order

to find a substantial number of gravitational microlensing

events, hundreds of millions of stars are monitored at least

daily by dedicated surveys and if microlensing events are

detected or suspected at a given target monitoring frequency is

increased to enable proper characterisation. Both the Optical

Gravitational Lensing Experiment (OGLE) and Microlensing

Observations in Astrophysics (MOA) surveys, together detect-

ing more than 2000 microlensing events per year, operate real-

time data reduction systems that report photometric data of

ongoing events promptly to the scientific community [9], [10].

With the resources for follow-up observations being limited

and detected microlensing events being in oversupply, a well-

informed decision needs to be made about how to distribute

the available observing time amongst the potential targets so

that the scientific return is being maximised.

The rapid construction of an observation schedule is highly

desirable because event observation priorities change substan-

tially on time-scales as short as a few minutes and the avail-

ability of telescope resources for observations also come with

little predictability, given that we are dependent on the weather.

We note that robotic telescopes have the technical advantage of

flexible scheduling and prompt reaction. However, the design

of software to efficiently schedule observing campaigns across

several telescope networks explicitly needs to support both the

science requirements of the campaign and the capabilities of

the telescopes. A variety of scheduling problems arising in

astronomy have been studied previously [11], here we present

a novel approach designed specifically for microlensing ob-

servation schedules.

Because unpredictable weather conditions can interrupt

ongoing observations, rapid rescheduling at short notice is

a priority. As scheduling over even a 24 hour horizon is

computationally intensive large computational resources need

to be available on-demand.

In this paper, we present a cloud based e-Infrastructure

for scheduling microlensing observations. Cloud computing

offers elastic computational resources on-demand via a pay-

as-you-go model [12]. Clouds offers several compelling advan-

tages over alternatives computing paradigms: firstly the elastic

nature of cloud resources can meet the unpredictable and

bursty needs of the observation scheduling algorithms in order

to quickly generate a new, high quality schedule. Secondly,

resources are provisioned on a pay-per-use model, therefore

resources can be added and removed based on the current

demand, avoiding under and over provisioning and therefore

saving costs. It is useful to point out that alternate paradigms,

such as the grid or cluster environments have been considered,

but would not fully utilise the upfront infrastructure costs [13],

and would therefore often be under provisioned. Finally, public

cloud platforms such as Amazon EC2 offer very high levels of

availability through their Service Level Agreements (SLAs),

which in turn minimises the probably of any downtime of our

2015 IEEE 11th International Conference on eScience

978-1-4673-9325-6/15 $31.00 © 2015 IEEE

DOI 10.1109/eScience.2015.54

362

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Architecture of e-Infrastructure for scheduling astronomical observations.

e-Infrastructure.

The e-Infrastructure we have developed currently constructs

observation schedules for a single telescope. The quality

of the generated schedules is determined by a metric we

have proposed that rewards high value targets being regularly

observed with ideal regularity. This metric also accounts for

interrupted observations and subsequent rescheduling. The

e-Infrastructure supports four techniques to construct high

quality observation schedules, including a greedy algorithm,

two different hill climbing searches and a simulated annealing

search. The e-Infrastructure supports parallelisation via the

deployment of a portfolio of these techniques on a large

pool of cloud based resources. A key observation is that

the e-Infrastructure allows the performance of the scheduling

system to scale with the amount of computational resources

used, thus allowing a user to easily adjust the investment

in computational infrastructure with the quality of schedule

required.

The remainder of this paper is structured as follows.

Section II presents the architecture of the e-Infrastructure.

Section III provides the solution techniques employed in the

e-Infrastructure to generate schedules. Section IV considers

the problem of rescheduling when there is an interruption.

Section V confirms the feasibility of the infrastructure and

presents the empirical evaluation of the techniques on historic

data. Section VI concludes this paper by presenting future

work.

II. E-INFRASTRUCTURE ARCHITECTURE

The e-Infrastructure we have designed obtains input from

the ARTEMiS (Automated Robotic Terrestrial Exoplanet Mi-

crolensing Search) system [14] and is intended to interact with

a telescope as shown in Figure 1. There are two main compo-

nents, namely (i) the Schedule Constructor, which generates a

schedule for the telescope based on the input data (considered

in Section III), and (ii) the Re-scheduler, which reschedules the

telescope when there is an interruption due to unpredictable

weather (presented in Section IV). Both components harness

the computational resources on the cloud for generating the

schedules. In this research, the e-Infrastructure makes use of

the Amazon Web Services (AWS)1 Elastic Compute Cloud

(EC2)2 virtual machines. The e-Infrastructure facilitates the

management of the components on AWS and is supported

by the MIT StarCluster3 for managing the AWS resources.

StarCluster facilitates the automatic configuration and launch

of AWS EC2 VMs as a cluster and in addition allows for

adding or removing VMs from a cluster which is leveraged in

the e-Infrastructure.

A. Input

With the aim to infer planet population statistics from

microlensing observations, the detection efficiency of our

campaign should be as large as possible. We adopt a priority-

cadence-exposure time paradigm, in which these three param-

eters per target completely characterise the campaign strategy.

These parameters are:

i. a gain factor that accounts for the importance of the tar-

get and the resources consumed by the observation [15],

ii. a cadence interval that represents the ideal time interval

between observations, and

iii. an exposure time that represents the length of an obser-

vation.

The gain factor allows the prioritisation of events and can

be straightforwardly evaluated from the current properties of

the event [16], as carried out in real time by the ARTEMiS

1http://aws.amazon.com/
2http://aws.amazon.com/ec2/
3http://star.mit.edu/cluster/

363

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

system. The values of the cadence interval and exposure time

have not been systematically studied, but practical experience

from the PLANET (Probing Lensing Anomalies NETwork)

campaign [7] has resulted in methods to calculate these values.

B. Quality of Schedules

In order to construct high quality schedules we must for-

mally specify a quality metric. In this section we present such

a metric.

Given a set of targets, S, that can be observed each target,

s ∈ S, has a gain (Ωs), a cadence (τs) and an observation

period (ts) calculated as described above. We need to plan

an observation schedule for a single telescope, v̂ ∈ Sn, of

a fixed length n. We use vi to refer to the ith target of the

schedule v̂. The targets are always scheduled to be observed

for the exact duration of their exposure time. A good schedule

will contain repeated observation of targets with high gain,

spaced according to their cadence. Our quality metric linearly

decreases the gain of a target as repeated observations deviate

from the ideal cadence. Formally we have;

qual (v̂) =

n∑

i=1

r (v̂, i, vi), (1)

where

r (v̂, i, s) = Ωs · (τs − |e (v̂, i, s)− τs|)/τs, (2)

and e (v̂, i, s) is the time between the most recent observation

of s and slot i, with a default value of τs if s has not yet been

observed.

The quality metric is then used by the e-Infrastructure to

construct a high quality schedule by the Schedule Constructor

considered in the next section.

III. SCHEDULE CONSTRUCTOR

The e-Infrastructure needs to construct an optimal schedule

as determined by the metric defined above. The construction

of valid or optimal combinatorial structures, such as this

schedule, is a common problem tackled in artificial intelli-

gence [17]. While it is not hard to find a valid schedule (any

sequence of targets is valid), it remains hard to find an optimal

schedule because the number of possibilities is enormous.

For example, one historic instance of this scheduling problem

requires scheduling observations for 1763 targets over a 24-

hour period allows 1763720 ≈ 2× 102337 possible schedules.

Clearly, this space can not be enumerated in practice. For this

reason the e-Infrastructure employs incomplete probabilistic

methods to construct good, but sub-optimal, solutions within

a reasonable time.

A. The GREEDY Algorithm

A simple technique often used to solve combinatorial prob-

lems is a greedy heuristic. Such a technique makes choices

that are locally optimal. This rarely results in the best possible

solution, but often provides a good compromise between time

complexity and solution quality [18].

Here the greedy approach constructs a schedule chrono-

logically by choosing the most promising target for each

observation slot, in the context of the observations already

planned. Pseudocode for this procedure is shown in Figure 2.

1: procedure GREEDY(v̂,S, i)
2: for j ← i, n do
3: vj ← argmaxs∈S r (v̂, j, s)
4: end for
5: return v̂
6: end procedure

Fig. 2. Complete the suffix of schedule v̂ from index i to n with targets S
using a greedy approach.

B. Local Search

Another common approach to solving combinatorial prob-

lems is to search the space of possible solutions, the so-
lution space, until a suitable solution has been found. For

problems with a solution space too large to be exhaustively

enumerated incomplete approaches, such as local search, are

often employed. Local search algorithms function by applying

local changes to an incumbent solution to move through

the search space until a computation limit is reached, or a

suitable solution is found [18]. To perform a local search two

mechanisms are required;

i. the construction of an initial candidate solution and

ii. the construction of a neighbour of a given solution.

An initial solution can be constructed via the GREEDY

algorithm. The neighbourhood of a schedule can be defined

by replacing any planned observation with any other target,

and then using GREEDY to adjust the suffix of the schedule.

Pseudocode for constructing a single neighbour is shown in

Figure 3. We refer to this neighbourhood as NH1.

1: procedure NEIGHBOUR(v̂,S)

2: i← UNIFORM (1, n)
3: vi ← GETTARGET (v̂, i,S \ {vi})
4: v̂ ← GREEDY (v̂,S, i+ 1)
5: return v̂
6: end procedure

7: procedure GETTARGET(v̂, i,S)

8: S′ ← TAKE (|S|/100, SORTBY (λs.r (v̂, i, s) ,S))
9: return UNIFORM

(
S′)

10: end procedure

Fig. 3. Compute a neighbour of schedule v̂ using observation targets S.
UNIFORM(i, j) chooses a random integer between i and j inclusive, according
to a uniform distribution. GETTARGET returns a random element from the top
1% of S as evaluated by r (v̂, i, s).

This neighbourhood is heavily biased toward alterations to

the tail end of a schedule, a change to the final target, vn, of the

schedule is considered on every iteration of the hill climbing,

where as a change to first target, v1, can only be considered

with a probability of 1/n. In order to counter act this bias

364

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

we alternate the direction of the greedy construction each

iteration of the algorithm, every second iteration we reschedule

forward from the altered target to the end of the schedule and

every other iteration we schedule backward from the altered

target to the first unscheduled observation. We refer to this

neighbourhood as NH2. The two methods of constructing

neighbours are empirically evaluated in Section V-A.

A simple local search technique that makes use of such

neighbourhoods is hill climbing, also known as gradient

descent. This method generates a neighbour of the incum-

bent solution and if this neighbour is an improvement the

incumbent solution is updated and the search continues [18].

Pseudocode is presented in Figure 4. The parameter NHOOD

is a function that generates a neighbour for the given schedule,

it can be either NH1 or NH2.

1: procedure HILLCLIMBING(v̂,S, NHOOD)

2: v̂′ ← NHOOD (v̂,S)
3: if eval(v̂′) >eval(v̂) then
4: OUTPUT(v̂′)
5: HILLCLIMBING(v̂′,S, NHOOD)
6: else
7: HILLCLIMBING(v̂,S, NHOOD)
8: end if
9: end procedure

Fig. 4. Perform a hill climbing search to find high quality schedules. The
search continues indefinitely but is terminated externally when a computa-
tional limit has been reached.

Hill climbing is known to get trapped in local optima

restricting the quality of solutions it may discover. Many meta-

heuristics have been proposed to overcome this short coming

of local search algorithms. A well known metaheuristic, sim-
ulated annealing, is applied here. This algorithm, inspired

by thermodynamical properties of cooling metal, modifies the

simple hill climbing algorithm to allow it to sometimes accept

worse solutions during search. The probability of accepting a

worse solution is decreased as search progresses [19], [20].

Pseudocode is given in Figure 5.

The different search techniques are empirically evaluated in

Section V-A.

IV. RE-SCHEDULER

The e-Infrastructure must be able to deal with unpredicted

interruptions to an ongoing observation schedule. For this, two

simple methods could be employed without alteration to the

quality metric:

i. offset the planned observations and ignore the interrup-

tion, or

ii. cancel observations that were scheduled to occur during

the interruption.

Neither of these alternatives is acceptable. Simply offsetting

the scheduled observations will disrupt the intervals between

all remaining observations, vastly degrading the quality of the

observations. Cancelling observations could also be costly, as

an observation of a target with very high gain may be cancelled

1: procedure SA(v̂,S, T emp, c, NHOOD)

2: v̂′ ← NHOOD (v̂,S)
3: Temp′ ← Temp · c
4: if ACCEPT(eval(v̂′) ,eval(v̂) , T emp) then
5: OUTPUT(v̂′)
6: SA(v̂′,S, T emp′, c, NHOOD)
7: else
8: SA(v̂,S, T emp′, c, NHOOD)
9: end if

10: end procedure

11: procedure ACCEPT(e′, e, T emp)

12: if e′ > e then
13: return True

14: else
15: r ← UNIFORM (0, 1)
16: p← exp((e′ − e)/Temp)
17: return p > r
18: end if
19: end procedure

Fig. 5. Perform a simulated annealing search to find high quality schedules.
UNIFORM(i, j) selects a random floating point number between i and j
inclusive, according to a uniform distribution.

Time

s1 s1 s1s2 s3

(a) If we ignore earlier observations after a short interruption we may
schedule a target twice in rapid succession, as demonstrated by target
s1 here. This is not ideal as we have deviated far from the ideal time
interval between observations unnecessarily.

Time

s1 s1s3s2 s2s4

(b) If we retain earlier observations after a long interruption a high value
target may never be scheduled again, as demonstrated by target s2 here.
This is not ideal because very high value targets can be excluded from
further observation.

Fig. 6. Problem cases when recovering from interrupted observations.

where as a slight deviation from its ideal cadence would be a

better option. Therefore the quality metric of a schedule has

been adjusted to adequately deal with such interruptions.

Consider these two simple ways to respond to interrupted

schedules:

i. throw away the observations that have been made so

far and plan a new schedule from scratch after the

interruption, or

ii. or continue scheduling treating the gap as an observation

of a target with zero gain.

Both these alternatives have serious shortcomings. First, con-

sider a short interruption, such as in Figure 6a. If we ignore the

history of observations prior to the interruption, then we may

365

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

choose to observe the same target twice in rapid succession

with no penalty, which is not ideal. Now consider a longer

interruption such as in Figure 6b. If we continue scheduling

treating the interruption as an observation of a zero gain

target, then the targets observed previously may be so heavily

penalised by the long break in observation that they are never

again scheduled. Again, this is not ideal.

A middle ground is to modify the quality metric so it

selectively forgets observations before an interruption under

certain conditions. Assume an interruption has occurred from

time a to a′. We are now scheduling an observation to be taken

time b > a′. When evaluating a particular target s:

i. if b − a < 2 · τs then include previous observation for

gain calculation of s,

ii. if b− a ≥ 2 · τs then schedule s as if for the first time.

Because these rescheduling events are often triggered by

unpredictable interruptions the demand for computational re-

sources will be highly bursty. The cloud computing paradigm

allows access to a set of resources from a data centre that meets

these sudden demands for compute power during rescheduling

events and then can be terminated until a further interruption.

In this manner, not only is the cloud economical in dealing

with interruptions, but also meets the computational require-

ments. For this reason the e-Infrastructure relies on cloud

based deployment for scheduling.

V. EXPERIMENTS

In this section, the search methods employed in the e-

Infrastructure are compared, followed by the parameters em-

ployed for the best search method, and finally the deploy-

ment of the best search method on the cloud using the e-

Infrastructure.

A. Search methods

In order to compare the different search techniques dis-

cussed in Section III schedules were constructed for three

different instances of historic data from the ARTEMiS system

[14]. On each of these instances three different algorithm

configurations were run. The configurations used were:

• HC1; hill climbing with neighbourhood NH1,

• HC2; hill climbing with neighbourhood NH2,

• SA; simulated annealing with neighbourhood NH2.

The parameters of the simulated annealing algorithm were

tuned for each instance as discussed in V-B resulting in the

settings:

• 2013-01-01; initial temperature 1500, cooling rate 0.001,

• 2013-06-01; initial temperature 3000, cooling rate 0.001,

• 2014-01-01; initial temperature 3000, cooling rate 0.001.

Each combination of instance data and algorithm configu-

ration was run with one hundred different seeds. Figures 7a,

7c and 7e show the mean and standard deviation for the runs,

and Figures 7b, 7d and 7f show the best solution found by

each configuration for each instance.

It is clear that the neighbourhood NH2 is better than NH1

on all instances, for both mean and best results. Also, given the

correct parameters the simulated annealing outperforms hill

climbing within an hour across all instances. Finally, it is also

worth noting that standard deviation of all methods is quite

large, indicating that a single run of any of the algorithms

will not guarantee good results. Instead several runs on the

same instance data with different seeds is required.

B. Parameters for simulated annealing

As mentioned in section V-A simulated annealing requires

two parameters to be set. In this section we demonstrate

that the choice of these parameters has a large effect on the

performance of the algorithm.

Taking the same three instances as Section V-A

the parameter space is sampled at 54 points (initial

temperature ∈ {1000, 1500, . . . , 5000}, cooling rate ∈
{0.0001, 0.0005, 0.001, 0.0025, 0.005, 0.01}. Each of these

points in the parameter space is run with five seeds on each

instance.

Figure 8 shows the best solution found by each of these

configurations across the different runs at three time steps.

The best parameter configuration varies across the different

instances and also the run time of the algorithm. In general,

the performance is more sensitive to cooling rate than initial

temperature. Also high cooling rates allow the algorithm to

find good solutions faster, while low cooling rates produce

better solutions when given enough time. As there is no

obvious way to predict the best configuration for particular

input data a priori we now investigate the parallel execution of

a portfolio of configurations to attain robustness across varied

input data.

C. Cloud deployment

This section demonstrates that distributing a portfolio of

solvers in the cloud allows the quality of constructed schedules

to scale with the computational resources invested in the

problem. As seen in Section V-A simulated annealing con-

sistently outperforms hill climbing so we focus our attention

on a portfolio of simulated annealing algorithms. As shown

in Section V-B the quality of the best constructed schedule is

heavily dependent on the configuration of the algorithm, but

the best setting varies across instances. There is no easy way

to determine the best configuration for an instance a priori,

so our portfolio contains a variety of configurations. Also as

highlighted in Section V-A, the performance of the algorithm

is also dependant on the seed, so our portfolio is extended to

include multiple seeds for each solver configuration.

In order to evaluate the performance of the portfolio ten

different instances of historic data from the ARTEMiS system

were selected. For each instance a portfolio of 486 simu-

lated annealing solvers was run. This portfolio features 81

configurations uniformly sampled from the parameter space,

with six unique runs for each configuration. This portfolio

was executed by the e-Infrastructure relying on the Amazon

Web Services (AWS) Elastic Compute Cloud (EC2) virtual

machines. The e-Infrastructure facilitates the deployment and

management of the portfolio on AWS. The e-Infrastructure

366

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

 66000

 66500

 67000

 67500

 68000

 68500

 69000

 69500

 70000

 70500

 71000

 0 10 20 30 40 50 60

G
ai

n

Time (m)

HC1
HC2

SA

(a) 2013-01-01 - Mean

 66000

 66500

 67000

 67500

 68000

 68500

 69000

 69500

 70000

 70500

 71000

 0 10 20 30 40 50 60

G
ai

n

Time (m)

HC1
HC2

SA

(b) 2013-01-01 - Best

 385000

 390000

 395000

 400000

 405000

 410000

 415000

 420000

 0 10 20 30 40 50 60

G
ai

n

Time (m)

HC1
HC2

SA

(c) 2013-06-01 - Mean

 385000

 390000

 395000

 400000

 405000

 410000

 415000

 420000

 0 10 20 30 40 50 60

G
ai

n

Time (m)

HC1
HC2

SA

(d) 2013-06-01 - Best

 79000

 79500

 80000

 80500

 81000

 81500

 82000

 82500

 0 10 20 30 40 50 60

G
ai

n

Time (m)

HC
HC2

SA

(e) 2014-01-01 - Mean

 79000

 79500

 80000

 80500

 81000

 81500

 82000

 82500

 0 10 20 30 40 50 60

G
ai

n

Time (m)

HC1
HC2

SA

(f) 2014-01-01 - Best

Fig. 7. A comparison of different solution techniques across three different historical instances. HC1 is hill climbing using neighbourhood NH1, HC2 is hill
climbing using neighbourhood NH2 and SA is simulated annealing using NH2.

367

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

(a) 2013-01-01, t=5m (b) 2013-01-01, t=15m (c) 2013-01-01, t=60m

(d) 2013-06-01, t=5m (e) 2013-06-01, t=15m (f) 2013-06-01, t=60m

(g) 2014-01-01, t=5m (h) 2014-01-01, t=15m (i) 2014-01-01, t=60m

Fig. 8. A parameter sweep for the simulated annealing algorithm using neighbourhood NH2 across three historical instances at three time steps. Clearly the
best configuration depends on the problem instance as well as the length of time the algorithm will be run. It is not possible to choose a globally optimal
configuration for all possible input data or expected run times.

is supported by the MIT StarCluster for managing the AWS

resources. Ten c4.8xlarge4 VMs with 36 vCPUs and 60 GB

memory was employed.

By re-sampling the results from this portfolio we are able to

demonstrate how the quality of the best schedule scales with

both the number of configurations and the number of seeds

per configuration. In order to normalise the results across the

different instances, the result of GREEDY was mapped to 0 and

the best solution found across the portfolio was mapped to one.

Intermediate values are determined via linear interpolation.

The results are shown in Figure 9. It is clear that the quality

of the best schedule found at each of the time steps increases

4http://aws.amazon.com/ec2/instance-types/

as either the number of seeds or configurations is increased up

to 486 vCPUs. As there is no interprocess communication to

cause a bottleneck for scalability, it is possible that scaling

to many more cores would result in construction of better

schedules. Finally, the performance scales well at all time steps

so the anytime behaviour of the algorithm also benefits from

additional computational resource.

368

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

(a) t=15m (b) t=30m

(c) t=45m (d) t=60m

Fig. 9. The results of deployment of the e-Infrastructure on cloud virtual machines averaged across ten historical instances. By increasing either the number
of algorithm configurations or runs per configuration we increase the quality of the best schedule found. This scalability in performance is observed up to
486 vCPUs. Also scaling the amount of available resources improves the performance of the algorithm at all time steps so the anytime performance of the
algorithm has been improved.

VI. CONCLUSION

In this paper, we have presented a cloud-based e-

Infrastructure to schedule microlensing observation. To

achieve this we proposed a quality metric for microlensing ob-

servation schedules that adequately accounts for rescheduling

after interrupted observations along with several techniques

for constructing high quality schedules by the application of

local search techniques including hill climbing and simulated

annealing. Experimental investigation found that given the

correct configuration simulated annealing was the most ef-

fective strategy. The experimental studies performed on the

Amazon cloud demonstrated robust performance when a large

pool of computational resource were used for implementing

these techniques and executing them across varied input data.

The results reported in this paper ascertain that such a cloud-

based e-Infrastructure is an ideal solution towards efficiently

generating observation schedules given that the computational

requirements for rescheduling are both bursty and highly

unpredictable.

In the future, efforts will be made towards deploying the

e-Infrastructure in real-time. We aim to explore the under-

lying methods in the context of multiple telescopes as well

as incorporating techniques for load balancing and dynamic

rescheduling of resources on the cloud.

ACKNOWLEDGMENT

This research was pursued under the EPSRC grant ‘Working

Together: Constraint Programming and Cloud Computing’

(EP/K015745/1) and an Amazon Web Services (AWS) Ed-

ucation Research Grant.

369

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] A. Einstein, “Lens-like action of a star by the deviation of light in the
gravitational field,” Science, vol. 84, no. 2188, pp. 506–507, 1936.

[2] B. Paczynski, “Gravitational microlensing by the galactic halo,” The
Astrophysical Journal, vol. 304, pp. 1–5, 1986.

[3] S. Mao and B. Paczynski, “Gravitational microlensing by double stars
and planetary systems,” The Astrophysical Journal, vol. 374, pp. L37–
L40, 1991.

[4] M. Dominik, “Studying planet populations with einstein’s blip,” Philo-
sophical Transactions of the Royal Society A: Mathematical, Physical
and Engineering Sciences, vol. 368, no. 1924, pp. 3535–3550, 2010.

[5] M. Kiraga and B. Paczynski, “Gravitational microlensing of the galactic
bulge stars,” The Astrophysical Journal, vol. 430, pp. L101–L104, 1994.

[6] A. Gould and A. Loeb, “Discovering planetary systems through gravita-
tional microlenses,” The Astrophysical Journal, vol. 396, pp. 104–114,
1992.

[7] M. Dominik, M. Albrow, J.-P. Beaulieu, J. Caldwell, D. DePoy,
B. Gaudi, A. Gould, J. Greenhill, K. Hill, S. Kane et al., “The planet
microlensing follow-up network: results and prospects for the detection
of extra-solar planets,” Planetary and Space Science, vol. 50, no. 3, pp.
299–307, 2002.

[8] M. Dominik, N. Rattenbury, A. Allan, S. Mao, D. Bramich, M. Burgdorf,
E. Kerins, Y. Tsapras et al., “An anomaly detector with immediate
feedback to hunt for planets of earth mass and below by microlensing,”
Monthly Notices of the Royal Astronomical Society, vol. 380, no. 2, pp.
792–804, 2007.

[9] I. Bond, F. Abe, R. Dodd, J. Hearnshaw, M. Honda, J. Jugaku,
P. Kilmartin, A. Marles, K. Masuda, Y. Matsubara et al., “Real-time
difference imaging analysis of moa galactic bulge observations during
2000,” Monthly Notices of the Royal Astronomical Society, vol. 327,
no. 3, pp. 868–880, 2001.

[10] A. Udalski, “The optical gravitational lensing experiment. real time data
analysis systems in the ogle-iii survey,” Acta Astronautica, 2003.

[11] M. Mora and M. Solar, “A survey on the dynamic scheduling
problem in astronomical observations,” in Artificial Intelligence
in Theory and Practice III, ser. IFIP Advances in Information
and Communication Technology, M. Bramer, Ed. Springer Berlin
Heidelberg, 2010, vol. 331, pp. 111–120. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-15286-3 11

[12] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia, “Above the clouds: A berkeley view of cloud
computing,” EECS Department, University of California, Berkeley,
Tech. Rep. UCB/EECS-2009-28, Feb 2009. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

[13] I. Foster, Y. Zhao, I. Raicu, and S. Lu, “Cloud computing and grid
computing 360-degree compared,” in Grid Computing Environments
Workshop, 2008. GCE ’08, Nov 2008, pp. 1–10.

[14] M. Dominik, K. Horne, A. Allan, N. Rattenbury, Y. Tsapras, C. Snod-
grass, M. Bode, M. Burgdorf, S. Fraser, E. Kerins et al., “Artemis
(automated robotic terrestrial exoplanet microlensing search): A possible
expert-system based cooperative effort to hunt for planets of earth mass
and below,” Astronomische Nachrichten, vol. 329, no. 3, pp. 248–251,
2008.

[15] M. Dominik, U. G. Jørgensen, N. Rattenbury, M. Mathiasen, T. Hinse,
S. Calchi Novati, K. Harpsøe, V. Bozza, T. Anguita, M. Burgdorf et al.,
“Realisation of a fully-deterministic microlensing observing strategy
for inferring planet populations,” Astronomische Nachrichten, vol. 331,
no. 7, pp. 671–691, 2010.

[16] K. Horne, C. Snodgrass, and Y. Tsapras, “A metric and optimization
scheme for microlens planet searches,” Monthly Notices of the Royal
Astronomical Society, vol. 396, no. 4, pp. 2087–2102, 2009.

[17] S. J. Russell and P. Norvig, Artificial Intelligence: A modern approach,
2nd ed. Pearson Education, 1995.

[18] J. Pearl, Heuristics: Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Longman Publishing Co., Inc,, 1984.

[19] S. Kirkpatrick, M. Vecchi et al., “Optimization by simmulated anneal-
ing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[20] V. Černỳ, “Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm,” Journal of optimization theory
and applications, vol. 45, no. 1, pp. 41–51, 1985.

370

Authorized licensed use limited to: ST ANDREWS UNIVERSITY. Downloaded on February 14,2022 at 16:31:53 UTC from IEEE Xplore. Restrictions apply.

